
Scalability Limitations of VIA-Based
Technologies in Supporting MPI

Ron Brightwell
Scalable Computing Systems
Sandia National Laboratories

Arthur B. Maccabe
Scalable Systems Lab

University of New Mexico

Outline

• Background
• VIA
• MPI
• Cplant™
• Requirements
• Analysis
• Suggestions
• Summary

Background

• Zero-copy protocols
– Emphasis on eliminating intermediate memory-to-

memory copies
– Focus on end-to-end bandwidth for large messages

• OS bypass
– Bypass the operating system for data transfers
– Avoid protocol stack
– Avoid interrupts
– Decrease host processor overhead
– Decouple the network from the host processor

Virtual Interface Architecture (VIA)

• Published by Compaq, Intel, and Microsoft
• Provides user-level processes direct access to

the network interface
• VI is a point-to-point channel between processes
• Connection can be reliable or unreliable
• Each VI has a send and receive queue
• Requests are given to the VI to process

asynchronously
• Memory must be explicitly registered
• API supports one-sided and send/recv operations

VIA

• Notification of completion
– Examine queue to which descriptor was posted
– Examine completion queue (select)
– Asynchronous handlers

• All queues are traversed in FIFO order
• Remote memory operations

– Target memory is registered
– Origin specifies local and remote addresses
– Operations do not consume descriptors
– Completion is via memory inspection or additional

synchronization protocol
– Remote read operations are optional

• 1024 connections suggested minimum

Message Passing Interface (MPI)

• Communicator
– Safe message passing space for point-to-point
– Collective operations have safe “subspace”

• User-supplied tags
– Wildcards

• Fully connected communication model
• Unexpected messages

– Usually at least a two-level protocol
– Short protocol is eager with receive-side buffering

• Progress Rule

Cplant™

• Large-scale, massively parallel computer
• Intended to scale to 10,000 nodes
• Scalability is critical
• Modeled after the Intel TFLOPS machine
• Nearly identical runtime environment

– Scales to 9000+ processors
– Familiar to TFLOPS and Paragon users

• Largest current machine is 592 nodes
– #44 on the Top 500

Phase I - Prototype (Hawaii)

• 128 Digital PWS 433a (Miata)
• 433 MHz 21164 Alpha CPU
• 2 MB L3 Cache
• 128 MB ECC SDRAM
• 24 Myrinet dual 8-port SAN

switches
• 32-bit, 33 MHz LANai-4 NIC
• Two 8-port serial cards per SSS-0

for console access
• I/O - Six 9 GB disks
• Compile server - 1 DEC PWS

433a
• Integrated by SNL

Phase II - Production (Alaska)

• 400 Digital PWS 500a (Miata)
• 500 MHz Alpha 21164 CPU
• 2 MB L3 Cache
• 192 MB ECC SDRAM
• 16-port Myrinet SAN/LAN

switch
• 32-bit, 33 MHz LANai-4 NIC
• 6 DEC AS1200, 12 RAID (.75

Tbyte) || file server
• 1 DEC AS4100 compile &

user file server
• Integrated by Compaq

Phase III- Production (Siberia)

• 624 Compaq XP1000 (Monet)
• 500 MHz Alpha 21264 CPU
• 4 MB L3 Cache
• 256 MB ECC SDRAM
• 16-port Myrinet SAN/LAN

switch
• 64-bit, 33 MHz LANai-7 NIC
• 1.73 TB disk I/O
• Integrated by Compaq and

Abba Technologies

Phase IV – Development (June ‘00)

• 1024+ Compaq DS-10 (1U Slate)
• 466 MHz 21264 CPU
• 256 MB ECC SDRAM
• 64-port Myrinet SAN/LAN switch
• 64-bit 33 MHz LANai-7 NIC
• Red/Black switching supported

– 256 Black + 1024 Middle + 256 Red

CTH Performance
of

nodes Cplant Tflops DEC8400 Blue-Pacific

1 34.06 48.58 32.41 41.65

2 18.37 26.73 19.33 22.69

4 10.53 14.78 12.34 14.03

8 5.54 7.78 7.02 7.35

16 3.05 3.96 4.91 3.77

32 1.52 2.02 3.47 1.93

64 0.83 1.05 1.78 1.01

128 0.42 0.56 0.52

256 0.22 0.28 0.26

Grind Time (µsec/cell/cyc)
CTH Performance

0.10

1.00

10.00

100.00

1 10 100 1000
No. of Nodes

G
rin

d
Ti

m
e

(µ
se

c/
ce

ll/
cy

c)

Cplant Tflops
DEC8400 Blue-Pacific

CTH Scale-Up on Cplant

0.10

1.00

10.00

100.00

1 10 100 1000
No. of Nodes

G
rin

d
Ti

m
e

(µ
se

c/
ce

ll/
cy

c)
Cplant Perfect

Cplant™ Runtime Environment

• yod - Service node parallel job launcher
• bebopd - Compute node allocator
• PCT - Process control thread, compute node

daemon
• pingd, showmesh - Compute node status tools

Runtime Environment (cont’d)

• Yod
– Contacts compute node allocator
– Launches the application into the compute partition
– Redirects all application I/O (stdio, file I/O)
– Makes any filesystem visible in the service partition

visible to the application
– Redirects any UNIX signals to compute node

processes
– Allows user to choose specific compute nodes
– Can launch multiple (up to 5) different binaries

Runtime Environment (cont’d)

• PCT
– Contacts bebopd to join compute partition
– Forms a spanning tree with other PCT’s to fan out

the executable, shell environment, signals, etc.
– fork()’s, exec()’s, and monitors status of child

process
– Cleans up a parallel job
– Provides a back trace for process faults

Runtime Environment (cont’d)

• Bebopd
– Accepts requests from PCT’s to join the compute

partition
– Accepts requests from yod for compute nodes
– Accepts requests from pingd for status of compute

nodes
– Allows for multiple compute partitions

Runtime Environment (conc’d)

• Pingd
– Displays list of available compute nodes
– Displays list of compute nodes in use
– Displays owner, elapsed time of jobs
– Allows users to kill their jobs
– Allows administrators to kill jobs and free up specific

nodes
– Allows administrators to remove nodes from the

compute partition
• Showmesh

– Massages pingd output into TFLOPS-like showmesh

Parallel I/O

• Fyod/Sfyod
– Runs on nodes in the file I/O partition
– Parallel independent file I/O
– Each compute process opens a single file

• Third party solution
– Use I/O nodes as proxies
– Use a third party filesystem (currently SGI’s CXFS)

Others

• Support tools
– Debuggers
– Performance debuggers

• Computational steering
– Manipulate a running application in real-time

Cplant™ Requirements

• Target 8192 nodes
• Number of connections

– MPI application
• Fully connected

– PCT’s
• Fully connected
• Single persistent connection to allocator
• Single connection to launcher

– Parallel file system
• 32:1 compute nodes to I/O nodes

– Debugger, Steering
• Fully connected?

Requirements (cont’d)

• Establish connections as needed
– Performance degradation

• Initial send/recv operations incur connection cost
• Initial send/recv operations may incur connection

breakdown cost
– Requires a “listener”

• Consumes CPU cycles for accepting connections
• Consumes memory for extra thread/process

– Loss of determinism and predictability
• Same application can behave very differently

– Loss of fairness
• Wildcard receives come from established connections
• Independent processes share connections

– Increases complexity

Requirements (cont’d)

• Time to open/close a connection
– Parallel job startup should happen in seconds, not

tens of minutes or hours
– TFLOPS can launch 4000-node job in less than 30

seconds
– Cplant™ can launch 580-node job is ~5 seconds
– Assume all connections can be estabished in O(n)

and each connection takes 100 ms:

8192 nodes x 0.1 sec = 819.2 sec = 13.7 minutes

Requirements (cont’d)

• Resource reservation
– Finite number of connections available
– Establishing connections is expensive
– Reserving 8192 connections before attempting to

establish them might be prudent
• Unexpected message buffer space

– Use only what is needed
– Use what is allocated

Requirements (conc’d)

• Performance
– Necessary but not sufficient for scalability
– While raw VIA provides performance it doesn’t

support MPI features
• Message selection
• Unexpected messages
• Arbitrary memory regions

Message Selection

• No support for message selection within a VI
• MPI library code is responsible for selection
• Host processor must be involved in all MPI

operations
• VI per communicator

– Really requires two VI’s per communicator (peer
and collective)

– Increases VI use
– Still doesn’t solve tag matching

Message Selection (cont’d)

• Let library do matching
– Mandates queue management
– Context, tag in message header
– Uses host processor cycles
– Defeats the intent of OS bypass

Unexpected Messages

• Buffer must be posted for VI receive to complete
• Two-level protocol used in practice
• Short protocol

– Eager send, buffer at the receiver
• Long protocol

– RTS/CTS or rendezvous protocol

• Receive descriptor must always be posted
– Pre-post a receive for each connection

Unexpected Messages

• Memory use
– Short message size is 4096 bytes
– 8192 nodes
– 2 outstanding messages

4 KB x 8 KB x 2 = 64 MB

Unexpected Messages

• Latency
– Pre-posted receive for 4096 bytes
– If unexpected, message is copied
– PCI bandwidth = 120 MB/s
– Latency (added to base transmission time)

(4096 bytes)(1/(120 x 10242))(sec/byte)
= 1/(120 x 256)sec
= 1,000,000/(120 x 256)sec
= 32.6 µsec

• Still need additional user-level flow control

Arbitrary Buffers

• MPI has no restriction on buffers
• VIA provides no explicit ability to discover

regions that are registered
• Long protocol buffers will have to be registered

and unregistered
• Ping-pong latency/bandwidth tests do not include

time to register/deregister memory
• Possibly a limitation of the underlying OS

Suggestions

• Connection bundles
– A single call to create a group of connections
– Addresses resource reservation and connection

times
• Optimized connection establishment protocols

– Does anybody care?
• Overflow pools for unexpected messages

– Limit the amount of buffering needed per
connection

• Flexible tag matching in the descriptor – no
longer FIFO ordering

Summary

• VIA has some inherent scalability limitations
– Number of connections
– Time to open/close connections
– Resource reservation
– Unexpected messages
– Performance

• VIA is probably okay for small- or medium-scale
clusters

• Eliminating the PCI bus (ala Infiniband) doesn’t
help most of the problems

